报告时间:2022年4月15日 10:00
地 点:线上腾讯会议 633-553-762
报告人:陈果良(华东师范大学)
报告题目:An inverse eigenvalue problem for pseudo-Jacobi matrices
汇报摘要:
In this talk, the theory on direct and inverse spectral problems for Jacobi matrices is revisited in a kind of pseudo-Jacobi matrices J (n, r, β) with a mixed path as its graph in the non-self-adjoint setting. In this context, a sign change in one of the nondiagonal entries of the matrix yields strong perturbations in its spectral properties. By analogy with van Moerbeke's construction idea for Jacobi matrices, the reconstruction of a pseudo-Jacobi matrix from its spectrum and the spectra of two complementary principal matrices is investigated. An algorithm for the reconstruction of matrices from prescribed spectral data is provided and illustrative numerical experiments are performed. Finally, an extended eigenvector-eigenvalue identity is introduced, and can be used to solve some other pseudo-Jacobi inverse eigenvalue problems.
汇报人简介:
陈果良,华东师范大学永利yl23411教授,理学博士。主要从事数值代数方向,主持过多项国家自然科学基金、上海市科委重点基金和上海市教委重点基金项目。已经在国内外数学、物理等学术刊物上发表论文170余篇。曾担任二届上海市工业与应用数学副理事长,获得上海市园丁奖和优秀教育工作者等荣誉。已培养博士研究生15名。